Monotone transformations on the cone of all positive semidefinite real matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Rank Optimization on the Cone of Positive Semidefinite Matrices

We propose an algorithm for solving optimization problems defined on a subset of the cone of symmetric positive semidefinite matrices. This algorithm relies on the factorization X = Y Y T , where the number of columns of Y fixes an upper bound on the rank of the positive semidefinite matrix X. It is thus very effective for solving problems that have a low-rank solution. The factorization X = Y ...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Positive Semidefinite Germs on the Cone

The problem of representing a positive semidefinite function (=psd) as a sum of squares (=sos) is a very old matter in real algebra and real geometry. Still, it is a difficult question always appealing the specialists. Concerning real analytic germs we can summarize what is known in a few statements. Let X be a irreducible real analytic set germ of dimension d. Any psd f of X is an sos of merom...

متن کامل

Proximal Point Algorithm with Schur Decomposition on the Cone of Symmetric Semidefinite Positive Matrices∗

In this work, we propose a proximal algorithm for unconstrained optimization on the cone of symmetric semidefinite positive matrices. It appears to be the first in the proximal class on the set of methods that convert a Symmetric Definite Positive Optimization in Nonlinear Optimization. It replaces the main iteration of the conceptual proximal point algorithm by a sequence of nonlinear programm...

متن کامل

Characterization of P-Property for some Z-Transformations on positive semidefinite cone

The P -property of the following two Z-transformations with respect to the positive semidefinite cone is characterized: (i) I − S, where S : S → S is a nilpotent linear transformation, (ii) I − L A , where LA is the Lyapunov transformation defined on S n×n by LA(X) = AX + XA . (Here S denotes the space of all symmetric n×n matrices and I is the identity transformation.)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematica Slovaca

سال: 2020

ISSN: 1337-2211,0139-9918

DOI: 10.1515/ms-2017-0386